Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Bored Pile Designs Using Geotechnical Data in Parts of Port Harcourt and Environs, Rivers State, Nigeria

John, P. N¹, Udom, G. J² A.C Tse³ Department of Geology, University of Port Harcourt, Nigeria

doi: https://doi.org/10.37745/bjesr.2013/vol11n5114 Published September 10, 2023

Citation: John, P. N, Udom, G.J., Tse A.C. (2023) Bored Pile Designs Using Geotechnical Data in Parts of Port Harcourt and Environs, Rivers State, Nigeria, *British Journal of Earth Sciences Research*, 11 (5),1-14

ABSTRACT: Assessment of ultimate pile carrying capacity (deep foundation) and its settlement in parts of Port Harcourt and environs Rivers State has become imperative due to moderate bearing pressure and poor subsoil nature found in the study area. Bored pile foundation analysis was carried out for the soil profiles with diameter 306, 406, 460 and 600mm for the deep foundation at various study area were calculated. The study shows that the higher the diameter and pile depth of the foundation, the higher the ultimate pile carrying capacity. The settlement of the piles fall within an acceptable criterion of one-tenth. Safe working load of Greater Port Harcourt New Stadium Precient (BH4) was found higher, when compared to other locations in parts of Port Harcourt and environs.

KEYWORD: Pile, Bored piles. Settlement, safe working load, Port Harcourt, Rivers State.

INTRODUCTION

The reason for most collapse building are ascribed to poor quality building material, while thus may be true, less attention is paid on the sub-surface soil condition that bears the foundation (Youdeowei et al., 2019). The need for deep foundation has become imperative in part of Port Harcourt and environs, due to moderate or poor bearing capacity which may not be suitable for high rise buildings. These necessitate the construction of high rise buildings using pile foundation. The need of deep foundation for heavy structures in the Niger delta has been recognized by several authors (Teme et al., 2008). Piles are columnar elements in a foundation which have the function of transferring load from the superstructure through weak compressible strata or through water onto stiffer or more compact and less-compressible soils or a stable stratum. The study aims at the design of bored piles within Port Harcourt city and environ.

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

This involves determining the safe work load for three different sizes of pile diameters and their anticipated settlement characteristic. Geotechnical information underlying the study areas to a depth of 20m was determined to enable appropriate pile foundation design. Pile diameter of 406 mm design by Akpila et al. (2006), observed 1070 kN as the allowable pile working load.

DESCRIPTION OF STUDY AREA / GEOLOGY

The study areas (Fig. 1) are located within Port Harcourt city, Obio/Akpor and Ikwerre local Government areas of Rivers state, Nigeria.It lies within a sub-horizontal geomorphologic train with a measure of undulations among from uneven surface area erosion. Ground elevation ranges between 15 to 45 meters above mean sea level. The geology of the Niger delta is obtained from the works of several writers, including Reyment, 1965, Short and Stauble (1967), Murat, (1970), Merki, (1970) Ekweozor and Dakoru, (1994).

Study Location Coordinate

The study location coordinates for the various boring are as shown in Table 1

Location	Northing	Easting
BH1	04°81'48.43"	006°98'43.536"
BH2	04°84'39.718"	006°98'26.0118"
BH3	04°46'63.4°	006°58'49.451"
BH4	04°57'53.4"	006°58'10.0"
BH5	04°57'43.1"	006°58'14.2"
BH6	04°57'49.9"	006°58'14.2"

Table 1: Showing the Coordinates of the studied locations in Rivers state.

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Figure 1.0 Map of the study area in Rivers state

METHODOLOGY

Field Exploration / Laboratory analysis

Subsurface data from six (6) locations: comprising of one (1) from Andoni junction (BH3) in Port Harcourt city local government and one (1) each from Okilton drive NTA/Mgbuoba road (BH2) and formal school of nursing (BH1) all in Obio/Akpor local government area and one (1) each from greater Port Harcourt new stadium prescient (BH4), Justice Adolphus Karibe hospital (BH5) and cultural Arts prescient (BH6) all in Ikwerre local government area of Rivers state. The study area was studied through ground borings to depths of 20.25m each using a light cable percussion boring rig. During the boring operations, disturbed samples were regularly collected at depth of 0.75m intervals and also when change of soil type is noticed. Undisturbed cohesive soil samples were retrieved from the boreholes with conventional open-tube sampler 70mm in diameter and 450mm in length. All collected soil samples were visually examinated, identified and roughly classified in the field. Standard penetration test (SPT) was carried out to determine the penetration

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

resistance of cohesionless strata at specific depths within the boreholes as the boring progresses. Series of classification and mechanical property tests were conducted on representative soil samples. These include Atterberg limit tests, particle size analysis test, natural moisture content test, unit weight test, unconsolidated undrained triaxial test and consolidation test, etc. All the tests followed standard procedures of testing soils for civil engineering purpose. Natural moisture content test, unit weight test, unconsolidated undrained triaxial test and consolidation test etc.

PILE LOAD CARRYING CAPACITY ANALYSIS FOR DEEP FOUNDATION

Pile load carrying capacity of non-displacement piles within the study area was carried out with the principles of soil mechanics approach. The choice of non- displacement pile is due to the economic consideration and effectiveness of installation within the study area. The carrying capacity in this study is obtained from the addition of the skin friction and Ending bearing. The ultimate bearing capacity is as follows.

 $Q_u = Q_s + Q_b + W_p$

(1)

Due to the insignificance component of W_p , in relations to Q_p this value is neglected in most scenarios. (Tomlinson, 2001). Work load for pile shaft for sand and clay are stated below.

Qu = fs.As. + f_b.Ab (2) $\mathbf{Q}_{\mathbf{u}} = \delta_{\mathbf{v}}'.\mathbf{K}_{s}.\tan\emptyset.\mathbf{A}_{s} + \delta_{\mathbf{v}\mathbf{b}}'\mathbf{N}_{a}.\mathbf{A}_{b}$ (For sand layers) (3) $\mathbf{Q}_{\mathbf{u}} = \alpha . \acute{\mathbf{c}}_{\mathbf{u}} . \mathbf{A}_{\mathbf{s}} + \mathbf{C}_{\mathbf{u}} . \mathbf{N}_{\mathbf{c}} . \mathbf{A}_{\mathbf{b}}$ (For clay layer) (4)Where: Qu = Ultimate Bearing pile capacity of pile Wp = weight of the pile Qs = ultimate shaft resistance Ob = ultimate base resistance fs = unit shaft resistance f_b = unit base resistance δ_v = average effective overburden pressure over soil layer Ks = coefficient of lateral earth pressure against shaft wall α = pile wall adhesion factor \dot{c}_u = average undrained shear strength of the clay over the pile penetration depth considered δ_{vb} ' = effective overburden pressure at the pile base Cu = undrained shear strength of the clay at the pile base Ab = cross-sectional area of pile base Nc. Nq = bearing capacity factorsAs = exposed area of pile shaft in the soil layer

 δ = effective interaction angle between pile wall and the soil (Ø*75)

Bearing capacity values (Nq) based on the works of Berenzantsev were adopted (Berezantsev, 1961). These values take into account the depth to width ratio and conform to field criteria of most pile failures (Tomlinson, 2001). The ultimate bearing capacity can be described as the load

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

resulting in a settlement of one- tenth of the diameter of the pile (Vesic, 1973), though this rule excludes large diameter piles.

An average cu of less than 50kN/m² and average adhesion factor of 0.5 was considered in this study. The values corroborate with research values on bored piles by Skempton, 1959 and Nwankwoala et al., 2016.

SETTLEMENT ANALYSIS

The Single pile settlement is given by the sum of the elastic shortening of the shaft and the compression of the soil beneath the base as follows.

$$\rho = \frac{(W_s + 2W_b)L}{2A_s E_p} + \frac{\pi W_b}{4A_b} * \frac{B(1 - v^2)I_p}{E_b}$$
(5)

Where W_s and W_b are the loads on the pile shaft and base respectively

L = shaft length

A_s and A_b are the cross-sectional area of the shaft and base respectively

- is the elastic modulus of the pile material Ep
- is the pile width В

V is the poisson's ratio of the soil

Ip is an influence factor related to the ratio of

deformation modulus of the soil beneath the pile bases Eb

With v = 0.25 and L/B>5, I_p is taken as 0.5 A minimum value of 17000000kPa is assumed the elastic Modulus of the concrete material. Derivations of the deformation modulus of the soil beneath pile base were made from Das's assumption (Das, 1994).

RESULTS/ DISCUSSION

Soil Stratigraphy

The data from the field work and laboratory tests were used for stratification of the underlying soil in the various study location. Soil profiles characterizing the study area are described below in Table 3 and figure 2.

Table 2: Soli Stra	ugrapny						
Description		Bo	reholes/ Thic	kness			_
	(BH1)	BH2	BH3	BH4	BH5	BH6	
CLAY, sandy	0.0-9.0	0.0-12.0	0.0-13.5	0.0-10.5	0.0-9.75	0.0-10.5	_
Sand	9.0-20.25	12.0-20.25	13.5-20.25	10.5-20.25	9.75-20.25	10.5-20.25	

Table 2:	Soil	Stratigraphy
----------	------	--------------

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Fig 2: Stratigraphic of the study area.

Engineering Properties of the Soils

The geotechnical investigation revealed that the soil deposits within the depths drilled are characterized by the following;

(BH1) consists of a light brown firm sandy clay overlying loose to medium-dense to dense, yellowish brown fine to medium to coarse grained sand.

(BH2) light brown firm sandy clay overlying medium-dense to dense, light brown fine to medium grained sand.

(BH3) light brown firm sandy clay overlying medium-dense, light grey fine to medium grained sand.

(BH4) light brown firm to stiff sandy clay overlying loose to medium-dense, light brown to grey fine to medium grained sand.

(BH5) yellowish brown firm to stiff sandy clay overlying loose to medium-dense, yellowish brown and light brown fine to medium grained sand

(BH6) yellowish brown firm to stiff sandy clay overlying loose to medium-dense, light brown to light grey fine to medium grained sand

Classification, strength and compressibility characteristics of the soils were determined from the laboratory. The relevant index and engineering parameters of the soils are summarized below.

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Firm to Stiff Sandy Clay

Thickness of the deposit varies from 9m to 13.5m as presented on table 2. The sandy clay is mainly moderate compressibility. The ranges of variation in the relevant index and Engineering parameters of the sandy clay are summarized below.

LOCATIONS	BH1	BH2	BH3	BH4	BH5	BH6
Parameter	Min Max Avg.	Min Max Avg.	Min Max Avg.	Min Max Avg.	Min Max Avg.	Min Max Avg.
Wn %	19.6 25.0 22	22.8 25.4 24.0	20.7 22.8 21.8	18.4 23.6 21	17.5 20.3 19.0	14.2 23.1 16.4
LL %	32.0 37.0 34	47 50 49	38 41 40	45 48 47	49 52 51	45 47 46
PL %	19.0 23.0 21	26 29 28	23 23 23	23 25 24	27 28 28	24 24 24
PI %	14.0 15.0 15	21 22 22	15 18 17	22 23 23	22 24 23	21 23 22
USCS	CL	CI	CI	CI	CI	CI
Cu (KN/m ²)	40 60 50	40 50 45	40 47 44	44 75 60	45 85 65	35 79 57
Ø (°)	4 7 6	3 4 4	3 5 4	5 10 8	4 8 6	3 8 6
Unit Weight (KN/m ³)	20.1 20.5 20.3	18.9 19.8 19.4	20.1 20.6 20.3	19.0 20.5 20	19.4 20.3 19.9	18.6 19.7 19.2
Cv (m ² /yr)	52.35 52.35 52.4	42.4 42.4 42.4	34.7 34.7 34.7	66.5 66.5 66.5	52.6 52.6 52.6	52.8 52.8 52.8
Mv (m ² /MN)	0.21 0.21 0.21	0.23 0.23 0.23	0.20 0.30 0.30	0.20 0.20 0.20	0.20 0.20 0.20	0.19 0.19 0.19

Table 3: Geotechnical Index Properties of Sandy clay in Port Harcourt and Environs

BH1- School of Nursing Rumueme, BH2- NTA-Rumuokwuta, BH3- Eagle Island, BH4- Great Port Harcourt new stadium

 $BH5-Justice\ Adolphus\ karibe\ whyte\ hospital,\ BH6-\ Cultural\ art\ prescient$

Wn- Natural moisture content, LL - Liquid limit, PL - Plastic limit, PI - Plastic index. Cu - Cohesion

 \emptyset (°) – Frictional angle, Cv – coefficient of consolidation (m²/yr), Mv – coefficient of volume compressibility

Loose to Medium Dense Sand layer

Beneath the clayey layer is a layer of predominantly poorly graded sand. Thickness ranges for variations in the relevant engineering parameter of the sand are given below.

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Prticle Size Distribution for Port-Harcourt and Environs, Rivers state

Fig 3.0: Particle Size Distribution of the study Areas.
Table 4: Geological Index Properties of Sand Layer in Port Harcourt and Environs

LOCATIONS	E	BH1		BH	[2		BH3]	BH4]	BH5		B	H6		
Parameter	Min	Max	Avg.															
d ₁₀ (mm)	0.20	0.23	0.22	0.20	0.23	0.17	0.22	0.32	0.27	0.17	0.22	0.20	0.20	0.32	0.26	0.14	0.21	0.18
d ₃₀ (mm)	0.26	0.33	0.30	0.27	0.30	0.29	0.31	0.44	0.38	0.25	0.37	0.31	0.30	0.50	0.40	0.23	0.35	0.29
d ₆₀ (mm)	0.34	0.50	0.42	0.36	0.44	0.40	0.46	0.59	0.53	0.36	0.48	0.42	0.48	0.90	0.69	0.35	0.49	0.42
$\mathbf{C}_{\mathrm{u}} = \frac{d_{60}}{d_{10}}$	1.7	2.2	1.95	1.8	1.9	1.9	1.8	2.1	1.95	2.1	2.5	2.3	2.4	2.8	2.6	1.6	3.0	2.3
$C_{\rm c} = \frac{d_{30}}{d_{10} x d_{30}}$	0.9	1.0	0.95	0.9	1.0	0.95	0.9	1.0	0.95	1.0	1.3	1.2	0.9	1.0	0.95	0.9	1.2	1.05
Unit weight KN/m3	19.6	20.2	19.9	18.5	20.8	19.7	20.4	20.9	20.7	19.2	19.5	19.4	19.2	19.9	19.6	18.6	19.4	19.0
Dry Unit weight KN/m ³	16.8	17.5	17.2	16.0	17.5	16.8	17.6	17.8	17.7	16.2	16.5	16.4	16.7	16.9	16.8	16.4	16.7	16.6
MC %	16.6	18.5	17.6	15.2	18.7	17.0	16.3	17.4	16.9	15.2	18.5	16.7	15.1	17.9	16.5	13.6	15.8	14.7
Ø (°)	29	33	31	30	30	30	30	31	31	30	31	31	30	30	30	29	30	30
N value	7	45	26	18	33	26	15	19	17	18	22	20	21	25	23	18	30	24

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

PILE WORK LOAD

The pile work load was calculated using relevant equations stated above and the results are presented below.

Table 5Ultimate Pile Capacity and Pile Safe Work Load and Depth for School of
Nursing, Rumueme BH 1

Diameter (m)											
Pile Foundation Pile Compressive Resistance (KN)											
Depth (mm)	306	306	360	360	406	406	600	600			
10	428	171	534	214	631	253	1116	446			
15	475	190	587	235	688	275	1183	473			
20	966	386	1236	494	1490	596	2797	1119			

Table 6	Ultimate Pile capacity and Pile safe Working Load and Depth for Okilton Drive
junction	. NTA-Rumuokwuta BH 2

_		Diameter (m)											
	Pile FoundationPile Compressive Resistance (KN)												
	Depth (mm)	306	306	360	360	406	406	600	600				
	10	302	121	416	166	473	189	723	289				
	15	557	223	689	276	809	323	1394	558				
	20	913	365	1162	465	1397	559	2598	1039				

Table 7	Ultimate Pile bearing capacities and Pile safe Working Load and Depth for
Andoni .	unction, Eagle Island BH 3

				— D18	ameter	(m)		
Pile Foundati	on	Pil	e Comp	ressiv	e Resis	tance ((KN)	
Depth (mm)	306	306	360	360	406	406	600	600
10	245	98	292	117	334	133	518	207
15	645	258	804	321	950	380	1796	718
20	927	371	1159	464	1372	549	2580	1032
20	921	5/1	1139	404	1372	549	2380	1032

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Table 8Ultimate Pile Capacity and Pile safe Working Load and Depth for Greater Port
Harcourt New stadium Precient BH 4

				Diam	ator (m)				
				Diam					
Pile Foundation Pile Compressive Resistance (KN)									
Depth (mm)	306	306	360	360	406	406	600	600	
10	396	158	472	189	538	215	831	333	
15	1054	336	1054	422	1250	500	2435	974	
20	1172	469	1460	584	1724	690	3296	1318	

Table 9Ultimate Pile Capacity and Pile safe Working Load and Depth for JusticeAdolphus Karibe Speciality HospitalBH 5

Diameter (m)							
Pile Foundation Pile Compressive Resistance (KN)							
306	306	360	360	406	406	600	600
572	228	691	276	822	329	1483	593
834	334	1012	405	1202	481	2158	863
1155	462	1398	560	1653	661	2914	1166
	306 572 834	306306572228834334	Pile Compress 306 306 360 572 228 691 834 334 1012	Pile Compressive Res 306 306 360 360 572 228 691 276 834 334 1012 405	Pile Compressive Resistance (H 306 306 360 406 572 228 691 276 822 834 334 1012 405 1202	Pile Compressive Resistance (KN) 306 306 360 406 406 572 228 691 276 822 329 834 334 1012 405 1202 481	Pile Compressive Resistance (KN) 306 306 360 406 406 600 572 228 691 276 822 329 1483 834 334 1012 405 1202 481 2158

Table 10:Ultimate Pile Capacity and Pile Safe Working Load and Depth for Cultural ArtPrecient BH 6

	Diameter (m)							
Pile Foundation	Pile Foundation Pile Compressive Resistance (KN)							
Depth (mm)	306	306	360	360	406	406	600	600
10	604	242	763	305	912	365	1664	666
15	850	340	1065	426	1264	506	2260	904
20	1232	493	1537	615	1818	727	3212	1285

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Figure 4.0: Typical Chart for the Safe Load Capacity of Pile for BH4

Table 11 Summary of Pile Characteristics								
BH	Pile Depth (m)	Pile Diameter	Ultimate Pile Capacity KN	Allowable Pile capacity KN	Expected Settlement mm	Allowable Settlement mm		
1	15	0.306	475	190	3.50	30.6		
1	15	0.360	587	235	4.11	30.6		
1	15	0.406	688	275	4.64	40.6		
1	15	0.600	1183	473	6.86	60		
1	20	0.306	966	386	11.41	30.6		
1	20	0.360	1236	494	13.42	36		
1	20	0.406	1490	596	15.14	40.6		
1	20	0.600	2797	1119	22.44	60		
2	15	0.306	302	121	3.81	30.6		
2	15	0.360	689	276	4.48	36		
2	15	0.406	809	323	5.05	40.6		
2	15	0.600	1394	557	7.47	60		
2	20	0.306	913	365	10.22	30.6		
2	20	0.360	1163	465	12.02	36		

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

	Publication	of the Europe	an Centre for F	Research Traini	ng and Deve	lopment -UK
2	20	0.406	1397	559	13.76	40.6
2 2 3 3	20	0.600	2598	1039	19.74	60
3	15	0.306	645	258	7.80	30.6
3	15	0.360	804	321	6.10	36
3	15	0.406	950	380	6.88	40.6
3 3 3	15	0.600	1796	718	10.86	60
3	20	0.306	927	371	7.80	30.6
3	20	0.360	1159	464	9.15	36
3	20	0.406	1372	549	10.32	40.6
3	20	0.600	2581	1032	16.03	60
4	15	0.306	841	337	7.33	30.6
4	15	0.360	1054	422	8.64	36
4	15	0.406	1250	500	11.09	40.6
4	15	0.600	2435	974	16.29	60
4	20	0.306	1172	469	9.31	30.6
4	20	0.360	1054	422	10.85	36
4	20	0.406	1725	690	12.48	40.6
4	20	0.600	3296	1318	20.15	60
5	15	0.306	835	334	7.48	30.6
5	15	0.360	1012	405	8.59	36
5	15	0.406	1202	481	9.68	40.6
5	15	0.600	2158	863	14.31	60
5	20	0.306	1156	462	9.20	30.6
5 5	20	0.360	1399	560	10.62	36
	20	0.406	1653	661	11.98	40.6
5	20	0.600	2914	1166	17.70	60
6	15	0.306	850	340	7.51	30.6
6	15	0.360	1065	426	8.86	36
6	15	0.406	1264	506	9.96	40.6
6	20	0.306	1232	493	10.07	30.6
6	20	0.360	1537	615	11.84	36
6	20	0.406	1818	727	13.36	40.6
6	20	0.600	3212	1285	19.74	60

CONCLUSION

The objective of the study was to determine the subsoil conditions, ultimate carrying capacity of pile and the pile settlement that are prevalent at the different locations within parts of Port Harcourt and Environs. Information from the field and laboratory test was used in determining the soil stratigraphy and the calculation of the ultimate carrying capacity of the piles.

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

The following conclusion can be drawn from the study areas in parts of Port Harcourt and Environs

- i. The different boreholes drilled have a near consistent uniform soil stratum but vary in clay thickness from 9.0 to 13.5m. the clays shows low to intermediate plasticity, which are underlain by fine to medium grained, loose to medium dense to dense sand
- ii. Pile foundation analysis was determined from the soil stratigraphy that was encountered on the study areas. Bored piles of diameters of 306,360,406 and 600mm within depth of 10, 15 and 20m were designed. Safe pile load capacity for the various study area are presented in Table 5 to 10.
- iii. Settlement analysis of the various piles indicates values less than the acceptable criterion of one-tenth multiply by the diameter of the pile (Table 11).
- iv. The pile settlement increases as the safe working load capacity and depth increases (Table 11).
- v. Greater Port Harcourt new stadium prescient has the highest safe working load of pile between Port Harcourt and Environs.

REFERENCE

Akpila S.B and Etuozo S.N (2000), Shallow Foundation Analysis on Heterogeneous Soil formation on the Niger Delta of Nigeria.

Berezantsev et al 1961, soil mechanics.

- British Standard Methods of Test for soils for Civil Engineering Purposes. B.S 1377: Part 2, 1990. Published by the British Standards Institution, pp: 8 200.
- Das B.M (1994) Principles of Geotechnical Engineering. PWS Publishing Company, USA.
- Ekweozor, C.M. and Dakoru, E,M. (1994). Northern Delta depobelt portion of the Akata-Agbada petroleum systems, Niger Delta AAPG Memoir (60), 599-613.
- Merki, P.J. (1970): Structural geology of the Cenozoic Niger Delta. African Geology, University of Ibadan press, 151-268.
- Murat, B (1970). Stratigraphy and paleogeography of the cretaceous and lower teriary in Southern Nigeria. in: T.F.G. J.Essay vagie and A.J. Whiteman (Eds) African Geology. Geology Department, University of Ibadan. 2-266.
- Nwankwoala HO, Youdeowei PO, Ngah SA (2009). Expanding Hydrogeotechnical Considerations in Environmental Impact Assessment Studies: A Case Study of Ogorode-Sapele, Delta State, Nigeria. J. Appl. Sci. Environ. Mange., 13(1): 67-71.
- Nwankwoala H.O and Adiela U.P (2016). Geotechnical Evaluation of Foundation conditions in Igbogene, Bayelsa state. *International journal of Energy and Environmental Research*. 4(3) 45-53.
- Reyment, R.A. (1965). Aspects of the geology of Nigeria Ibadan University press, Ibadan. 1145-1153.
- Short, K.C. and Stauble, A.J. (1967). Outline of the geology of Niger Delta, Bull. Americ. Ass Petrol Geol (51), 761-779.

Print ISSN: 2055-0111 (Print)

Online ISSN: 2055-012X (Online)

Website: <u>https://www.eajournals.org/</u>

Publication of the European Centre for Research Training and Development -UK

- Skempton, AW. and Bjeruum, L. 1957. A Contribution to the Settlement Analysis of Foundation on Clays. Geotechnique 7:168-178.
- Teme, S.C. and Ngerebara, O.D. (2008). Need for Prior Geotechnical Engineering Studies for Foundation Design: Case of Collapsed Building in Port Harcourt and Environs, Nigeria. Paper presented at the special technical session, 6th Annual International Conference of Geotechnical Engineering, Arlington. Paper 8.01b.
- Tomlinson, MJ. 2001. Foundation Design and Construction (7th edi.). Pearson Education Ltd. 73-74.

Terzaghi, K. 1943. Theoretical Soil Mechanics, John Wiley and Sons Inc. New York, USA.

Vesics et al (1973), Vesic Bearing Capacity Theory. Bearing Capacity of Shallow Foundation.

Youdeowei, P.O. and Rowland-Lato, E.O (2019). Geotechnical Investigation of a Collapse Building site in Port Harcourt, Rivers State, Nigeria. *International Journal of Engineering Research and Technical*.